Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365396

RESUMO

Tomato cultivation is threatened by environmental stresses (e.g., heat, drought) and by viral infection (mainly viruses belonging to the tomato yellow leaf curl virus family-TYLCVs). Unlike many RNA viruses, TYLCV infection does not induce a hypersensitive response and cell death in tomato plants. To ensure a successful infection, TYLCV preserves a suitable cellular environment where it can reproduce. Infected plants experience a mild stress, undergo adaptation and become partially "ready" to exposure to other environmental stresses. Plant wilting and cessation of growth caused by heat and drought is suppressed by TYLCV infection, mainly by down-regulating the heat shock transcription factors, HSFA1, HSFA2, HSFB1 and consequently, the expression of HSF-regulated stress genes. In particular, TYLCV captures HSFA2 by inducing protein complexes and aggregates, thus attenuating an acute stress response, which otherwise causes plant death. Viral infection mitigates the increase in stress-induced metabolites, such as carbohydrates and amino acids, and leads to their reallocation from shoots to roots. Under high temperatures and water deficit, TYLCV induces plant cellular homeostasis, promoting host survival. Thus, this virus-plant interaction is beneficial for both partners.

2.
Mol Plant Pathol ; 23(4): 475-488, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34970822

RESUMO

With climate warming, drought becomes a vital challenge for agriculture. Extended drought periods affect plant-pathogen interactions. We demonstrate an interplay in tomato between drought and infection with tomato yellow leaf curl virus (TYLCV). Infected plants became more tolerant to drought, showing plant readiness to water scarcity by reducing metabolic activity in leaves and increasing it in roots. Reallocation of osmolytes, such as carbohydrates and amino acids, from shoots to roots suggested a role of roots in protecting infected tomatoes against drought. To avoid an acute response possibly lethal for the host organism, TYLCV down-regulated the drought-induced activation of stress response proteins and metabolites. Simultaneously, TYLCV promoted the stabilization of osmoprotectants' patterns and water balance parameters, resulting in the development of buffering conditions in infected plants subjected to prolonged stress. Drought-dependent decline of TYLCV amounts was correlated with HSFA1-controlled activation of autophagy, mostly in the roots. The tomato response to combined drought and TYLCV infection points to a mutual interaction between the plant host and its viral pathogen.


Assuntos
Begomovirus , Solanum lycopersicum , Begomovirus/fisiologia , Secas , Proteínas de Choque Térmico , Doenças das Plantas
3.
Cells ; 10(11)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34831098

RESUMO

A growing body of research points to a positive interplay between viruses and plants. Tomato yellow curl virus (TYLCV) is able to protect tomato host plants against extreme drought. To envisage the use of virus protective capacity in agriculture, TYLCV-resistant tomato lines have to be infected first with the virus before planting. Such virus-resistant tomato plants contain virus amounts that do not cause disease symptoms, growth inhibition, or yield loss, but are sufficient to modify the metabolism of the plant, resulting in improved tolerance to drought. This phenomenon is based on the TYLCV-dependent stabilization of amounts of key osmoprotectants induced by drought (soluble sugars, amino acids, and proteins). Although in infected TYLCV-susceptible tomatoes, stress markers also show an enhanced stability, in infected TYLCV-resistant plants, water balance and osmolyte homeostasis reach particularly high levels. These tomato plants survive long periods of time during water withholding. However, after recovery to normal irrigation, they produce fruits which are not exposed to drought, similarly to the control plants. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.


Assuntos
Adaptação Fisiológica , Begomovirus/fisiologia , Secas , Solanum lycopersicum/fisiologia , Solanum lycopersicum/virologia , Biomassa , Frutas/crescimento & desenvolvimento , Proteínas de Choque Térmico/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Estabilidade Proteica
4.
Sci Rep ; 10(1): 1856, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024917

RESUMO

Pharmaceuticals remain in treated wastewater used to irrigate agricultural crops. Their effect on terrestrial plants is practically unknown. Here we tested whether these compounds can be considered as plant stress inducers. Several features characterize the general stress response in plants: production of reactive oxygen species acting as stress-response signals, MAPKs signaling cascade inducing expression of defense genes, heat shock proteins preventing protein denaturation and degradation, and amino acids playing signaling roles and involved in osmoregulation. Tomato seedlings bathing in a cocktail of pharmaceuticals (Carbamazepine, Valporic acid, Phenytoin, Diazepam, Lamotrigine) or in Carbamazepine alone, at different concentrations and during different time-periods, were used to study the patterns of stress-related markers. The accumulation of the stress-related biomarkers in leaf and root tissues pointed to a cumulative stress response, mobilizing the cell protection machinery to avoid metabolic modifications and to restore homeostasis. The described approach is suitable for the investigation of stress response of different crop plants to various contaminants present in treated wastewater.


Assuntos
Preparações Farmacêuticas/administração & dosagem , Solanum lycopersicum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Águas Residuárias/química , Produtos Agrícolas/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
5.
PLoS Pathog ; 14(8): e1007282, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30157283

RESUMO

Gene silencing is a natural antiviral defense mechanism in plants. For effective infection, plant viruses encode viral silencing suppressors to counter this plant antiviral response. The geminivirus-encoded C4 protein has been identified as a gene silencing suppressor, but the underlying mechanism of action has not been characterized. Here, we report that Cotton Leaf Curl Multan virus (CLCuMuV) C4 protein interacts with S-adenosyl methionine synthetase (SAMS), a core enzyme in the methyl cycle, and inhibits SAMS enzymatic activity. By contrast, an R13A mutation in C4 abolished its capacity to interact with SAMS and to suppress SAMS enzymatic activity. Overexpression of wild-type C4, but not mutant C4R13A, suppresses both transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). Plants infected with CLCuMuV carrying C4R13A show decreased levels of symptoms and viral DNA accumulation associated with enhanced viral DNA methylation. Furthermore, silencing of NbSAMS2 reduces both TGS and PTGS, but enhanced plant susceptibility to two geminiviruses CLCuMuV and Tomato yellow leaf curl China virus. These data suggest that CLCuMuV C4 suppresses both TGS and PTGS by inhibiting SAMS activity to enhance CLCuMuV infection in plants.


Assuntos
Begomovirus/patogenicidade , Inativação Gênica , Metionina Adenosiltransferase/metabolismo , Interferência de RNA , Proteínas Virais/metabolismo , Begomovirus/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Metionina Adenosiltransferase/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica , Proteínas Virais/fisiologia
6.
Oncotarget ; 9(44): 27487-27501, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29938000

RESUMO

The binary system presented in this work is based on the bacteriophage HK022 integrase recombinase that activates the expression of a silenced Diphtheria toxin gene, both controlled by the cancer specific hTERT promoter. Using a lung cancer mice model, assays of different apoptotic and anti-apoptotic factors have demonstrated that the Integrase based binary system is highly specific towards cancer cells and more efficient compared to the conventional mono system whose toxin is directly expressed under hTERT. In a mice survival test, this binary system demonstrated longer persistence compared to the untreated and the mono treated ones. The reason underlying the advantage of this binary system over the mono system seems to be an overexpression of various hTERT suppressing factors induced by the mono system.

7.
Viruses ; 9(10)2017 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-28946649

RESUMO

Begomoviruses are vectored in a circulative persistent manner by the whitefly Bemisia tabaci. The insect ingests viral particles with its stylets. Virions pass along the food canal and reach the esophagus and the midgut. They cross the filter chamber and the midgut into the haemolymph, translocate into the primary salivary glands and are egested with the saliva into the plant phloem. Begomoviruses have to cross several barriers and checkpoints successfully, while interacting with would-be receptors and other whitefly proteins. The bulk of the virus remains associated with the midgut and the filter chamber. In these tissues, viral genomes, mainly from the tomato yellow leaf curl virus (TYLCV) family, may be transcribed and may replicate. However, at the same time, virus amounts peak, and the insect autophagic response is activated, which in turn inhibits replication and induces the destruction of the virus. Some begomoviruses invade tissues outside the circulative pathway, such as ovaries and fat cells. Autophagy limits the amounts of virus associated with these organs. In this review, we discuss the different sites begomoviruses need to cross to complete a successful circular infection, the role of the coat protein in this process and the sites that balance between virus accumulation and virus destruction.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Adipócitos/virologia , Animais , Autofagia/fisiologia , DNA Viral , Sistema Digestório/virologia , Feminino , Genoma Viral , Hemolinfa/virologia , Ovário/virologia , Floema/virologia , Glândulas Salivares/virologia , Proteínas Virais/metabolismo , Vírion/metabolismo , Replicação Viral/fisiologia
8.
Front Plant Sci ; 8: 355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360921

RESUMO

Tomato yellow leaf curl virus (TYLCV), a begomovirus, induces protein aggregation in infected tomatoes and in its whitefly vector Bemisia tabaci. The interactions between TYLCV and HSP70 and HSP90 in plants and vectors are necessity for virus infection to proceed. In infected host cells, HSP70 and HSP90 are redistributed from a soluble to an aggregated state. These aggregates contain, together with viral DNA/proteins and virions, HSPs and components of the protein quality control system such as ubiquitin, 26S proteasome subunits, and the autophagy protein ATG8. TYLCV CP can form complexes with HSPs in tomato and whitefly. Nonetheless, HSP70 and HSP90 play different roles in the viral cell cycle in the plant host. In the infected host cell, HSP70, but not HSP90, participates in the translocation of CP from the cytoplasm into the nucleus. Viral amounts decrease when HSP70 is inhibited, but increase when HSP90 is downregulated. In the whitefly vector, HSP70 impairs the circulative transmission of TYLCV; its inhibition increases transmission. Hence, the efficiency of virus acquisition by whiteflies depends on the functionality of both plant chaperones and their cross-talk with other protein mechanisms controlling virus-induced aggregation.

9.
Cell Stress Chaperones ; 22(3): 345-355, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28324352

RESUMO

Tomato yellow leaf curl virus (TYLCV) is a begomovirus infecting tomato plants worldwide. TYLCV needs a healthy host environment to ensure a successful infection cycle for long periods. Hence, TYLCV restrains its destructive effect and induces neither a hypersensitive response nor cell death in infected tomatoes. On the contrary, TYLCV counteracts cell death induced by other factors, such as inactivation of HSP90 functionality. Suppression of plant death is associated with the inhibition of the ubiquitin 26S proteasome degradation and with a deactivation of the heat shock transcription factor HSFA2 pathways (including decreased HSP17 levels). The goal of the current study was to find if the individual TYLCV genes were capable of suppressing HSP90-dependent death and HSFA2 deactivation. The expression of C2 (C3 and CP to a lesser extent) caused a decrease in the severity of death phenotypes, while the expression of V2 (C1 and C4 to a lesser extent) strengthened cell death. However, C2 or V2 markedly affected stress response under conditions of viral infection. The downregulation of HSFA2 signaling, initiated by the expression of C1 and V2, was detected in the absence of virus infection, but was enhanced in infected plants, while CP and C4 mitigated HSFA2 levels only in the infected tomatoes. The dependence of analyzed plant stress response suppression on the interaction of the expressed genes with the environment created by the whole virus infection was more pronounced than on the expression of individual TYLCV genes.


Assuntos
Begomovirus/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Proteínas Virais/metabolismo , 3,3'-Diaminobenzidina/química , Begomovirus/metabolismo , Inativação Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Solanum lycopersicum/virologia , Fotografação , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Estresse Fisiológico , Temperatura , Proteínas Virais/genética
10.
PLoS Pathog ; 12(6): e1005668, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27315204

RESUMO

Viruses interfere with and usurp host machinery and circumvent defense responses to create a suitable cellular environment for successful infection. This is usually achieved through interactions between viral proteins and host factors. Geminiviruses are a group of plant-infecting DNA viruses, of which some contain a betasatellite, known as DNAß. Here, we report that Cotton leaf curl Multan virus (CLCuMuV) uses its sole satellite-encoded protein ßC1 to regulate the plant ubiquitination pathway for effective infection. We found that CLCuMu betasatellite (CLCuMuB) ßC1 interacts with NbSKP1, and interrupts the interaction of NbSKP1s with NbCUL1. Silencing of either NbSKP1s or NbCUL1 enhances the accumulation of CLCuMuV genomic DNA and results in severe disease symptoms in plants. ßC1 impairs the integrity of SCFCOI1 and the stabilization of GAI, a substrate of the SCFSYL1 to hinder responses to jasmonates (JA) and gibberellins (GA). Moreover, JA treatment reduces viral accumulation and symptoms. These results suggest that CLCuMuB ßC1 inhibits the ubiquitination function of SCF E3 ligases through interacting with NbSKP1s to enhance CLCuMuV infection and symptom induction in plants.


Assuntos
Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Virais/metabolismo , Begomovirus , Imunoprecipitação , Microscopia de Fluorescência , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
12.
Sci Rep ; 6: 19715, 2016 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-26792235

RESUMO

Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency.


Assuntos
Begomovirus/fisiologia , Resposta ao Choque Térmico , Interações Hospedeiro-Patógeno , Temperatura Alta , Doenças das Plantas/virologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/virologia , Resistência à Doença , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Agregados Proteicos , Ligação Proteica , Transporte Proteico , Proteoma , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Mol Plant Pathol ; 17(2): 247-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25962748

RESUMO

To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.


Assuntos
Begomovirus/patogenicidade , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Vegetais/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/virologia , Proteínas do Capsídeo/metabolismo , Morte Celular , Inativação Gênica , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Temperatura Alta , Modelos Biológicos , Folhas de Planta/citologia , Folhas de Planta/virologia , Agregados Proteicos , Ubiquitinação
14.
J Bacteriol ; 198(1): 127-37, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324450

RESUMO

UNLABELLED: Over the course of the last 3 decades the role of the second messenger cyclic di-GMP (c-di-GMP) as a master regulator of bacterial physiology was determined. Although the control over c-di-GMP levels via synthesis and breakdown and the allosteric regulation of c-di-GMP over receptor proteins (effectors) and riboswitches have been extensively studied, relatively few effectors have been identified and most are of unknown functions. The obligate predatory bacterium Bdellovibrio bacteriovorus has a peculiar dimorphic life cycle, in which a phenotypic transition from a free-living attack phase (AP) to a sessile, intracellular predatory growth phase (GP) is tightly regulated by specific c-di-GMP diguanylate cyclases. B. bacteriovorus also bears one of the largest complement of defined effectors, almost none of known functions, suggesting that additional proteins may be involved in c-di-GMP signaling. In order to uncover novel c-di-GMP effectors, a c-di-GMP capture-compound mass-spectroscopy experiment was performed on wild-type AP and host-independent (HI) mutant cultures, the latter serving as a proxy for wild-type GP cells. Eighty-four proteins were identified as candidate c-di-GMP binders. Of these proteins, 65 did not include any recognized c-di-GMP binding site, and 3 carried known unorthodox binding sites. Putative functions could be assigned to 59 proteins. These proteins are included in metabolic pathways, regulatory circuits, cell transport, and motility, thereby creating a potentially large c-di-GMP network. False candidate effectors may include members of protein complexes, as well as proteins binding nucleotides or other cofactors that were, respectively, carried over or unspecifically interacted with the capture compound during the pulldown. Of the 84 candidates, 62 were found to specifically bind the c-di-GMP capture compound in AP or in HI cultures, suggesting c-di-GMP control over the whole-cell cycle of the bacterium. High affinity and specificity to c-di-GMP binding were confirmed using microscale thermophoresis with a hypothetical protein bearing a PilZ domain, an acyl coenzyme A dehydrogenase, and a two-component system response regulator, indicating that additional c-di-GMP binding candidates may be bona fide novel effectors. IMPORTANCE: In this study, 84 putative c-di-GMP binding proteins were identified in B. bacteriovorus, an obligate predatory bacterium whose lifestyle and reproduction are dependent on c-di-GMP signaling, using a c-di-GMP capture compound precipitation approach. This predicted complement covers metabolic, energy, transport, motility and regulatory pathways, and most of it is phase specific, i.e., 62 candidates bind the capture compound at defined modes of B. bacteriovorus lifestyle. Three of the putative binders further demonstrated specificity and high affinity to c-di-GMP via microscale thermophoresis, lending support for the presence of additional bona fide c-di-GMP effectors among the pulled-down protein repertoire.


Assuntos
Proteínas de Bactérias/metabolismo , Bdellovibrio/fisiologia , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Proteínas de Bactérias/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Ligação Proteica , Transdução de Sinais
15.
Virus Res ; 213: 304-313, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26654789

RESUMO

Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted by the whitefly Bemisia tabaci to tomato and other crops. TYLCV proteins are endangered by the host defenses. We have analyzed the capacity of the tomato plant and of the whitefly insect vector to degrade the six proteins encoded by the TYLCV genome. Tomato and whitefly demonstrated the highest proteolytic activity in the fractions containing soluble proteins, less-in large protein aggregates; a significant decrease of TYLCV proteolysis was detected in the intermediate-sized aggregates. All the six TYLCV proteins were differently targeted by the cytoplasmic and nuclear degradation machineries (proteases, ubiquitin 26S proteasome, autophagy). TYLCV could confront host degradation by sheltering in small/midsized aggregates, where viral proteins are less exposed to proteolysis. Indeed, TYLCV proteins were localized in aggregates of various sizes in both host organisms. This is the first study comparing degradation machinery in plant and insect hosts targeting all TYLCV proteins.


Assuntos
Begomovirus/imunologia , Begomovirus/fisiologia , Hemípteros/virologia , Evasão da Resposta Imune , Agregados Proteicos , Solanum lycopersicum/virologia , Animais , Hemípteros/imunologia , Solanum lycopersicum/imunologia , Proteólise , Proteínas Virais/metabolismo
16.
Sci Rep ; 5: 9967, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25940862

RESUMO

The spread of Tomato yellow leaf curl virus (TYLCV) was accompanied by the formation of coat protein (CP) aggregates of increasing size in the cytoplasm and nucleus of infected tomato (Solanum lycopersicum) cells. In order to better understand the TYLCV-host interaction, we investigated the properties and the subcellular accumulation pattern of the non-structural viral protein V2. CP and V2 are the only sense-oriented genes on the virus circular single-stranded DNA genome. Similar to CP, V2 localized to cytoplasmic aggregates of increasing size and as infection progressed was also found in nuclei, where it co-localized with CP. V2 was associated with viral genomic DNA molecules, suggesting that V2 functions as a DNA shuttling protein. The formation and the 26S proteasome-mediated degradation of V2 aggregates were dependent on the integrity of the actin and microtubule cytoskeleton. We propose that the cytoskeleton-dependent formation and growth of V2 aggregates play an important role during TYLCV infection, and that microtubules and actin filaments are important for the delivery of V2 to the 26S proteasome.


Assuntos
Begomovirus/fisiologia , Proteínas do Capsídeo/metabolismo , Citoesqueleto/virologia , DNA Viral/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Solanum lycopersicum/virologia , Begomovirus/patogenicidade , Proteínas do Capsídeo/genética , Citoesqueleto/metabolismo , DNA Viral/genética , Dimerização , Genes Virais/genética , Genoma Viral/genética , Solanum lycopersicum/metabolismo , Complexos Multiproteicos , Ligação Proteica
17.
Pest Manag Sci ; 70(10): 1632-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24464776

RESUMO

BACKGROUND: Tomato yellow leaf curl virus (TYLCV) is a begomovirus infecting tomato cultures worldwide. TYLCV is transmitted to plants by the whitefly Bemisia tabaci. Once in the plant, the virus is subjected to attack by the host-plant defences, which may include sequestration in aggregates, proteolysis, ubiquitination, 26S proteasome degradation and autophagy. Elucidating how the virus avoids destruction will make it possible to understand infection and possibly devise countermeasures. RESULTS: The accumulation of viral coat protein (CP) and of viral DNA in plants is a marker of a successful virus transmission by B. tabaci. In response to infection, tomato tissues display multiple ways of degrading TYLCV proteins and DNA. In this study it is shown that CP (in soluble and insoluble states) is the target of protease digestion, 26S proteasome degradation and autophagy. The highest degradation capacity was detected among soluble proteins and proteins in large aggregates/inclusion bodies; cytoplasmic extracts displayed higher activity than nuclear fractions. The very same fractions possessed the highest capacity to degrade viral genomic DNA. Separately, 26S proteasome degradation was associated with large aggregates (more pronounced in the nuclear than in the cytoplasmic fractions), which are indicators of a successful abduction of plants by viruses. Autophagy/lysosome/vacuole degradation was a characteristic of intermediate aggregates, sequestering the CP in the cytoplasm and retarding the development of large aggregates. Chloroplast proteases were active in soluble as well as in insoluble protein extracts. CONCLUSIONS: To the best of the authors' knowledge, this study is the first attempt to identify elements of the virus-targeted degradation machinery, which is a part of the plant response to virus invasion.


Assuntos
Begomovirus/imunologia , Begomovirus/metabolismo , DNA Viral/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Animais , Autofagia , Proteínas do Capsídeo/metabolismo , Hemípteros/virologia , Insetos Vetores/virologia , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
18.
PLoS One ; 8(11): e80756, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260473

RESUMO

The protein arginine methyltransferaseas (PRMTs) family is conserved from yeast to human, and regulates stability, localization and activity of proteins. We have characterized deletion strains corresponding to genes encoding for PRMT1/3/5 (designated amt-1, amt-3 and skb-1, respectively) in Neurospora crassa. Deletion of PRMT-encoding genes conferred altered Arg-methylated protein profiles, as determined immunologically. Δamt-1 exhibited reduced hyphal elongation rates (70% of wild type) and increased susceptibility to the ergosterol biosynthesis inhibitor voriconazole. In ▵amt-3, distances between branches were significantly longer than the wild type, suggesting this gene is required for proper regulation of hyphal branching. Deletion of skb-1 resulted in hyper conidiation (2-fold of the wild type) and increased tolerance to the chitin synthase inhibitor polyoxin D. Inactivation of two Type I PRMTs (amt-1 and amt-3) conferred changes in both asymmetric as well as symmetric protein methylation profiles, suggesting either common substrates and/or cross-regulation of different PRMTs. The PRMTs in N. crassa apparently share cellular pathways which were previously reported to be regulated by the NDR (Nuclear DBF2-related) kinase COT1. Using co-immunprecipitation experiments (with MYC-tagged proteins), we have shown that SKB1 and COT1 physically interacted and the abundance of the 75 kDa MYC::COT1 isoform was increased in a Δskb-1 background. On the basis of immunological detection, we propose the possible involvement of PRMTs in Arg-methylation of COT1.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobalto/metabolismo , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Antifúngicos/farmacologia , Arginina/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Metilação , Mutação , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/genética , Fenótipo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética
19.
PLoS One ; 8(7): e70280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894631

RESUMO

A functional capsid protein (CP) is essential for host plant infection and insect transmission of Tomato yellow leaf curl virus (TYLCV) and other monopartite begomoviruses. We have previously shown that TYLCV CP specifically interacts with the heat shock protein 70 (HSP70) of the virus insect vector, Bemisia tabaci. Here we demonstrate that during the development of tomato plant infection with TYLCV, a significant amount of HSP70 shifts from a soluble form into insoluble aggregates. CP and HSP70 co-localize in these aggregates, first in the cytoplasm, then in the nucleus of cells associated with the vascular system. CP-HSP70 interaction was demonstrated by co-immunopreciptation in cytoplasmic - but not in nuclear extracts from leaf and stem. Inhibition of HSP70 expression by quercetin caused a decrease in the amount of nuclear CP aggregates and a re-localization of a GFP-CP fusion protein from the nucleus to the cytoplasm. HSP70 inactivation resulted in a decrease of TYLCV DNA levels, demonstrating the role of HSP70 in TYLCV multiplication in planta. The current study reveals for the first time the involvement of plant HSP70 in TYLCV CP intracellular movement. As described earlier, nuclear aggregates contained TYLCV DNA-CP complexes and infectious virions. Showing that HSP70 localizes in these large nuclear aggregates infers that these structures operate as nuclear virus factories.


Assuntos
Begomovirus/fisiologia , Proteínas do Capsídeo/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Solanum lycopersicum/virologia , Antioxidantes/farmacologia , Begomovirus/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Caules de Planta/metabolismo , Caules de Planta/virologia , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Quercetina/farmacologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
20.
Viruses ; 5(3): 998-1022, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23524390

RESUMO

The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.


Assuntos
Begomovirus/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Interferência de RNA , Vírus de RNA/genética , Begomovirus/genética , Begomovirus/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/virologia , Proteínas de Plantas/imunologia , Vírus de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...